|
|
A124840
|
|
Triangle, row sums = A008683, the Mobius sequence.
|
|
1
|
|
|
1, 1, -2, 1, -4, 2, 1, -6, 6, -1, 1, -8, 12, -4, -2, 1, -10, 20, -10, -10, 10, 1, -12, 30, -20, -30, 60, -30, 1, -14, 42, -35, -70, 210, -210, 76, 1, -16, 46, -56, -140, 560, -840, 608, -173
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Binomial transform of the diagonalized matrix using A124839; i.e. let A124839 (1, -2, 2, -1...) = the diagonal of an infinite matrix M; then the triangle (deleting the zeros) = P*M where P = Pascal's triangle as an infinite lower triangular matrix.
|
|
EXAMPLE
|
First few rows of the triangle are:
1;
1, -2;
1, -4, 2;
1, -6, 6, -1;
1, -8, 12, -4, -2
1, -10, 20, -10, -10, 10;
1, -12, 30, -20, -30, 60, -30;
...
E.g. mu(5) = -1 = sum of row 5 terms: (1 - 8 + 12 - 4 - 2).
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|