%I
%S 1,1,2,1,4,2,1,6,6,1,1,8,12,4,2,1,10,20,10,10,10,1,12,30,
%T 20,30,60,30,1,14,42,35,70,210,210,76,1,16,46,56,140,560,
%U 840,608,173
%N Triangle, row sums = A008683, the Mobius sequence.
%C Cf. A124839, the inverse binomial transform of mu(n), A008683
%F Binomial transform of the diagonalized matrix using A124839; i.e. let A124839 (1, 2, 2, 1...) = the diagonal of an infinite matrix M; then the triangle (deleting the zeros) = P*M where P = Pascal's triangle as an infinite lower triangular matrix.
%e First few rows of the triangle are:
%e 1;
%e 1, 2;
%e 1, 4, 2;
%e 1, 6, 6, 1;
%e 1, 8, 12, 4, 2
%e 1, 10, 20, 10, 10, 10;
%e 1, 12, 30, 20, 30, 60, 30;
%e ...
%e E.g. mu(5) = 1 = sum of row 5 terms: (1  8 + 12  4  2).
%Y Cf. A124839, A008683.
%K sign,tabl
%O 1,3
%A _Gary W. Adamson_, Nov 10 2006
