OFFSET
0,2
COMMENTS
Row sums of A155495.
a(n) is the constant term in the expansion of (-1 + (1 + x + 1/x)^2)^n. - Seiichi Manyama, Nov 21 2019
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1109
FORMULA
a(n) = hypergeom([-n,-n,1/2-n],[1/2,1],-1).
n*(2*n-1)*a(n) = (32*(n-2))*(2*n-5)*a(n-3)+(8*(9*n^2-31*n+28))*a(n-2)+(2*(3*n^2+7*n-9))*a(n-1).
G.f.: sqrt((1-2*x+sqrt(1-8*x))/(2*(1-7*x-8*x^2))).
a(n) ~ 8^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Nov 27 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(3*n-2*k-1,n-2*k). - Seiichi Manyama, Feb 13 2024
MAPLE
f:= gfun:-rectoproc({n*(2*n-1)*a(n) = (32*(n-2))*(2*n-5)*a(n-3)+(8*(9*n^2-31*n+28))*a(n-2)+(2*(3*n^2+7*n-9))*a(n-1), a(0)=1, a(1)=2, a(2)=14}, a(n), remember):
map(f, [$0..30]);
MATHEMATICA
Table[Sum[Binomial[n, k] Binomial[2 n, 2 k], {k, 0, n}], {n, 0, 24}] (* Michael De Vlieger, Jun 09 2017 *)
PROG
(PARI) {a(n) = polcoef((-1+(1+x+1/x)^2)^n, 0)} \\ Seiichi Manyama, Nov 21 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jun 09 2017
STATUS
approved