login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288470
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*n,2*k).
6
1, 2, 14, 92, 646, 4652, 34124, 253528, 1901638, 14368844, 109208164, 833981128, 6394017436, 49185717752, 379438594136, 2934361958192, 22741538394694, 176582855512588, 1373431963785332, 10698376362421096, 83447762846703796, 651690159076273192, 5095051571420324264, 39874449115469939152, 312350761370734541596
OFFSET
0,2
COMMENTS
Row sums of A155495.
a(n) is the constant term in the expansion of (-1 + (1 + x + 1/x)^2)^n. - Seiichi Manyama, Nov 21 2019
LINKS
FORMULA
a(n) = hypergeom([-n,-n,1/2-n],[1/2,1],-1).
n*(2*n-1)*a(n) = (32*(n-2))*(2*n-5)*a(n-3)+(8*(9*n^2-31*n+28))*a(n-2)+(2*(3*n^2+7*n-9))*a(n-1).
G.f.: sqrt((1-2*x+sqrt(1-8*x))/(2*(1-7*x-8*x^2))).
a(n) ~ 8^n / sqrt(3*Pi*n). - Vaclav Kotesovec, Nov 27 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n,k) * binomial(3*n-2*k-1,n-2*k). - Seiichi Manyama, Feb 13 2024
MAPLE
f:= gfun:-rectoproc({n*(2*n-1)*a(n) = (32*(n-2))*(2*n-5)*a(n-3)+(8*(9*n^2-31*n+28))*a(n-2)+(2*(3*n^2+7*n-9))*a(n-1), a(0)=1, a(1)=2, a(2)=14}, a(n), remember):
map(f, [$0..30]);
MATHEMATICA
Table[Sum[Binomial[n, k] Binomial[2 n, 2 k], {k, 0, n}], {n, 0, 24}] (* Michael De Vlieger, Jun 09 2017 *)
PROG
(PARI) {a(n) = polcoef((-1+(1+x+1/x)^2)^n, 0)} \\ Seiichi Manyama, Nov 21 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jun 09 2017
STATUS
approved