OFFSET
0,6
COMMENTS
f(h,k) = number of paths consisting of steps from (0,0) to (h,k) using h unit steps right, k+1 unit steps up and 1 unit step down, in some order, with first step not down and no repeated points.
FORMULA
Another formula: f(h,k) = binomial(h+k,k+1) + Sum{C(i+j-1, j)*C(h+k-i-j, k-j+1): i=1, 2, ..., h-1, j=1, 2, ..., k+1}
EXAMPLE
Triangle begins:
0;
0, 1;
0, 1, 3;
0, 1, 5, 6;
0, 1, 7, 14, 10;
...
As a square array,
[ 0 0 0 0 0 ...]
[ 1 1 1 1 1 ...]
[ 3 5 7 9 11 ...]
[ 6 14 25 39 56 ...]
[10 30 65 119 196 ...]
[... ... ...]
MAPLE
A034261 := proc(n, k) binomial(n, n-k+1)*(k+(k-1)/(k-n-2)); end;
MATHEMATICA
Flatten[Table[Binomial[n, n-k+1](k+(k-1)/(k-n-2)), {n, 0, 15}, {k, 0, n}]] (* Harvey P. Dale, Jan 11 2013 *)
PROG
(PARI) f(h, k)=binomial(h+k, k+1)*(k*h+h+1)/(k+2)
(PARI) tabl(nn) = for (n=0, nn, for (k=0, n, print1(binomial(n, n-k+1)*(k+(k-1)/(k-n-2)), ", ")); print()); \\ Michel Marcus, Mar 20 2015
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 21 2000. The formula for f in the definition was found by Michael Somos.
Edited by M. F. Hasler, Nov 08 2017
STATUS
approved