login
A034261
Infinite square array f(a,b) = C(a+b,b+1)*(a*b+a+1)/(b+2), a, b >= 0, read by antidiagonals. Equivalently, triangular array T(n,k) = f(k,n-k), 0 <= k <= n, read by rows.
26
0, 0, 1, 0, 1, 3, 0, 1, 5, 6, 0, 1, 7, 14, 10, 0, 1, 9, 25, 30, 15, 0, 1, 11, 39, 65, 55, 21, 0, 1, 13, 56, 119, 140, 91, 28, 0, 1, 15, 76, 196, 294, 266, 140, 36, 0, 1, 17, 99, 300, 546, 630, 462, 204, 45, 0, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55
OFFSET
0,6
COMMENTS
f(h,k) = number of paths consisting of steps from (0,0) to (h,k) using h unit steps right, k+1 unit steps up and 1 unit step down, in some order, with first step not down and no repeated points.
FORMULA
Another formula: f(h,k) = binomial(h+k,k+1) + Sum{C(i+j-1, j)*C(h+k-i-j, k-j+1): i=1, 2, ..., h-1, j=1, 2, ..., k+1}
EXAMPLE
Triangle begins:
0;
0, 1;
0, 1, 3;
0, 1, 5, 6;
0, 1, 7, 14, 10;
...
As a square array,
[ 0 0 0 0 0 ...]
[ 1 1 1 1 1 ...]
[ 3 5 7 9 11 ...]
[ 6 14 25 39 56 ...]
[10 30 65 119 196 ...]
[... ... ...]
MAPLE
A034261 := proc(n, k) binomial(n, n-k+1)*(k+(k-1)/(k-n-2)); end;
MATHEMATICA
Flatten[Table[Binomial[n, n-k+1](k+(k-1)/(k-n-2)), {n, 0, 15}, {k, 0, n}]] (* Harvey P. Dale, Jan 11 2013 *)
PROG
(PARI) f(h, k)=binomial(h+k, k+1)*(k*h+h+1)/(k+2)
(PARI) tabl(nn) = for (n=0, nn, for (k=0, n, print1(binomial(n, n-k+1)*(k+(k-1)/(k-n-2)), ", ")); print()); \\ Michel Marcus, Mar 20 2015
CROSSREFS
Cf. A001787 (row sums), A000330(n) = f(n,1).
Cf. A034263, A034264, A034265, A034267 - A034275 for diagonals n -> f(n,n+k), for several fixed k.
Sequence in context: A356777 A254295 A143626 * A046778 A119925 A210663
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
Entry revised by N. J. A. Sloane, Apr 21 2000. The formula for f in the definition was found by Michael Somos.
Edited by M. F. Hasler, Nov 08 2017
STATUS
approved