OFFSET
0,9
LINKS
Emeric Deutsch and Sergi Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009; and also, Australas. J. Combin. 50 (2011), 187-199.
FORMULA
E.g.f.: (1-sin z)^(1-t)/(1-z).
The trivariate e.g.f. H(t,s,z) of the permutations of {1,2,...,n} with respect to size (marked by z), number of up-down cycles (marked by t), and number of cycles that are not up-down (marked by s) is given by H(t,s,z) = (1-sin z)^(s-t)/(1-z)^s.
EXAMPLE
T(3,0)=1 because we have (123).
T(4,2)=7 because we have (1)(243), (142)(3), (132)(4), (13)(24), (12)(34), (143)(2), and (14)(23).
Triangle starts:
1;
0,1;
0,1,1;
1,1,3,1;
4,6,7,6,1;
19,35,30,25,10,1;
MAPLE
G := (1-sin(z))^(1-t)/(1-z): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
MATHEMATICA
m = maxExponent = 11;
(CoefficientList[# + O[t]^m, t] Range[0, m-1]!&) /@ CoefficientList[(1 - Sin[z])^{1-t}/(1-z) + O[z]^m, z] // Flatten (* Jean-François Alcover, Aug 07 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 20 2011
STATUS
approved