This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A145910 a(n) = (1 + 3*n)*(4 + 3*n)/2. 3
 2, 14, 35, 65, 104, 152, 209, 275, 350, 434, 527, 629, 740, 860, 989, 1127, 1274, 1430, 1595, 1769, 1952, 2144, 2345, 2555, 2774, 3002, 3239, 3485, 3740, 4004, 4277, 4559, 4850, 5150, 5459, 5777, 6104, 6440, 6785, 7139, 7502, 7874 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1) + 3*(3n+1) = a(n-1) + A017197(n+1). a(n) = 2 + 9/2*n^2 + 15/2*n. - Paolo P. Lava, Oct 28 2008 G.f.: (-2 - 8*x + x^2)/(x-1)^3. - R. J. Mathar, Jan 06 2011 a(n) = A144449(n)/8. a(n) = 2*a(n-1) - a(n-2) + 9. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). MAPLE A145910:=n->(1+3*n)*(4+3*n)/2: seq(A145910(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2017 MATHEMATICA Table[(1+3n)(4+3n)/2, {n, 0, 50}] (* Harvey P. Dale, Feb 23 2011 *) PROG (PARI) a(n)=(1+3*n)*(4+3*n)/2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A017197, A144449. Sequence in context: A324043 A230894 A291152 * A128126 A134647 A004117 Adjacent sequences:  A145907 A145908 A145909 * A145911 A145912 A145913 KEYWORD nonn,easy AUTHOR Paul Curtz, Oct 24 2008 EXTENSIONS Terms a(11)-a(42) from Vincenzo Librandi, Nov 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 09:05 EST 2019. Contains 329995 sequences. (Running on oeis4.)