login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145910
a(n) = (1 + 3*n)*(4 + 3*n)/2.
4
2, 14, 35, 65, 104, 152, 209, 275, 350, 434, 527, 629, 740, 860, 989, 1127, 1274, 1430, 1595, 1769, 1952, 2144, 2345, 2555, 2774, 3002, 3239, 3485, 3740, 4004, 4277, 4559, 4850, 5150, 5459, 5777, 6104, 6440, 6785, 7139, 7502, 7874
OFFSET
0,1
REFERENCES
R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), pp. 140-142.
FORMULA
a(n) = a(n-1) + 3*(3*n+1) = a(n-1) + A017197(n+1).
G.f.: (-2 - 8*x + x^2)/(x-1)^3. - R. J. Mathar, Jan 06 2011
a(n) = A144449(n)/8.
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 2/3.
Sum_{n>=0} (-1)^n/a(n) = 4*Pi/(9*sqrt(3)) + 4*log(2)/9 - 2/3. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2)/2.
a(n) = A085001(n)/2. (End)
MAPLE
A145910:=n->(1+3*n)*(4+3*n)/2: seq(A145910(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2017
MATHEMATICA
Table[(1+3n)(4+3n)/2, {n, 0, 50}] (* Harvey P. Dale, Feb 23 2011 *)
PROG
(PARI) a(n)=(1+3*n)*(4+3*n)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 24 2008
EXTENSIONS
Terms a(11)-a(42) from Vincenzo Librandi, Nov 17 2009
STATUS
approved