|
|
A145910
|
|
a(n) = (1 + 3*n)*(4 + 3*n)/2.
|
|
3
|
|
|
2, 14, 35, 65, 104, 152, 209, 275, 350, 434, 527, 629, 740, 860, 989, 1127, 1274, 1430, 1595, 1769, 1952, 2144, 2345, 2555, 2774, 3002, 3239, 3485, 3740, 4004, 4277, 4559, 4850, 5150, 5459, 5777, 6104, 6440, 6785, 7139, 7502, 7874
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Table of n, a(n) for n=0..41.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = a(n-1) + 3*(3n+1) = a(n-1) + A017197(n+1).
a(n) = 2 + 9/2*n^2 + 15/2*n. - Paolo P. Lava, Oct 28 2008
G.f.: (-2 - 8*x + x^2)/(x-1)^3. - R. J. Mathar, Jan 06 2011
a(n) = A144449(n)/8.
a(n) = 2*a(n-1) - a(n-2) + 9.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
|
|
MAPLE
|
A145910:=n->(1+3*n)*(4+3*n)/2: seq(A145910(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2017
|
|
MATHEMATICA
|
Table[(1+3n)(4+3n)/2, {n, 0, 50}] (* Harvey P. Dale, Feb 23 2011 *)
|
|
PROG
|
(PARI) a(n)=(1+3*n)*(4+3*n)/2 \\ Charles R Greathouse IV, Jun 17 2017
|
|
CROSSREFS
|
Cf. A017197, A144449.
Sequence in context: A324043 A230894 A291152 * A128126 A134647 A004117
Adjacent sequences: A145907 A145908 A145909 * A145911 A145912 A145913
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Paul Curtz, Oct 24 2008
|
|
EXTENSIONS
|
Terms a(11)-a(42) from Vincenzo Librandi, Nov 17 2009
|
|
STATUS
|
approved
|
|
|
|