login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145908
Primes p such that p + floor(sqrt(p)) OR p + ceiling(sqrt(p)) is also prime.
1
2, 3, 5, 13, 19, 31, 37, 41, 47, 53, 59, 71, 97, 103, 127, 137, 139, 151, 167, 179, 197, 241, 277, 293, 313, 331, 349, 389, 401, 419, 457, 487, 499, 547, 563, 569, 577, 593, 607, 617, 619, 647, 683, 701, 733, 769, 811, 829, 853, 857, 877, 881, 907, 911, 937
OFFSET
1,1
FORMULA
A145907 UNION A086085. - R. J. Mathar, Oct 31 2008
EXAMPLE
p = 3; 3 + ceiling(sqrt(3)) = 5, which is prime. p = 5; 5 + floor(sqrt(5)) = 7, which is prime.
MAPLE
for n from 1 to 820 do p := ithprime(n) ; f := p+floor(sqrt(p)) ; c := p+ceil(sqrt(p)) ; if isprime(f) or isprime(c) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Oct 31 2008
CROSSREFS
Sequence in context: A155738 A215371 A164958 * A173830 A224223 A238497
KEYWORD
nonn
AUTHOR
Kyle D. Balliet, Oct 24 2008, Nov 06 2008
EXTENSIONS
2 terms inserted and sequence extended by R. J. Mathar, Oct 31 2008
STATUS
approved