OFFSET
0,1
REFERENCES
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 38.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
Sum_{k=0..n} 3/a(k) = 3*(n+1)/(3*n+4). [Corrected by Gary Detlefs, Mar 14 2018]
Sum_{k>=0} 3/a(k) = 1.
From Gary W. Adamson, Jan 03 2007: (Start)
Sum_{k>=0} 1/a(k) = 1/3.
Sum_{k=0..n} 1/a(k) = (n+1)/(3*n+4) [Jolley]. (End) [Corrected by Gary Detlefs, Mar 14 2018]
G.f.: 2*(2+8*x-x^2)/(1-x)^3. - R. J. Mathar, Sep 17 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
Sum_{n>=0} (-1)^n/a(n) = 2*Pi/(9*sqrt(3)) + 2*log(2)/9 - 1/3. - Amiram Eldar, Oct 08 2023
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2).
a(n) = 2*A145910(n). (End)
MATHEMATICA
CoefficientList[Series[2*(2+8x-x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
Table[(3n+1)(3n+4), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {4, 28, 70}, 50] (* Harvey P. Dale, Apr 07 2019 *)
PROG
(Magma) [(3*n+1)*(3*n+4): n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
(PARI) a(n)=(3*n+1)*(3*n+4) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 17 2003
EXTENSIONS
Edited by Don Reble, Nov 13 2005
STATUS
approved