login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085001
a(n) = (3*n+1)*(3*n+4).
4
4, 28, 70, 130, 208, 304, 418, 550, 700, 868, 1054, 1258, 1480, 1720, 1978, 2254, 2548, 2860, 3190, 3538, 3904, 4288, 4690, 5110, 5548, 6004, 6478, 6970, 7480, 8008, 8554, 9118, 9700, 10300, 10918, 11554, 12208, 12880, 13570, 14278, 15004, 15748, 16510, 17290, 18088
OFFSET
0,1
REFERENCES
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 38.
FORMULA
Sum_{k=0..n} 3/a(k) = 3*(n+1)/(3*n+4). [Corrected by Gary Detlefs, Mar 14 2018]
Sum_{k>=0} 3/a(k) = 1.
From Gary W. Adamson, Jan 03 2007: (Start)
Sum_{k>=0} 1/a(k) = 1/3.
Sum_{k=0..n} 1/a(k) = (n+1)/(3*n+4) [Jolley]. (End) [Corrected by Gary Detlefs, Mar 14 2018]
G.f.: 2*(2+8*x-x^2)/(1-x)^3. - R. J. Mathar, Sep 17 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
Sum_{n>=0} (-1)^n/a(n) = 2*Pi/(9*sqrt(3)) + 2*log(2)/9 - 1/3. - Amiram Eldar, Oct 08 2023
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2).
a(n) = 2*A145910(n). (End)
MATHEMATICA
CoefficientList[Series[2*(2+8x-x^2)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 08 2012 *)
Table[(3n+1)(3n+4), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {4, 28, 70}, 50] (* Harvey P. Dale, Apr 07 2019 *)
PROG
(Magma) [(3*n+1)*(3*n+4): n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
(PARI) a(n)=(3*n+1)*(3*n+4) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A145910.
Sequence in context: A197542 A203280 A085024 * A153784 A030117 A361173
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 17 2003
EXTENSIONS
Edited by Don Reble, Nov 13 2005
STATUS
approved