

A119368


Palindromes whose smallest palindromic proper multiple is the number concatenated with itself.


2



5, 6, 7, 8, 9, 656, 757, 767, 828, 838, 989, 57275, 58085, 65056, 65356, 65456, 65556, 68086, 69296, 73537, 74447, 75057, 75157, 75557, 76067, 76567, 76667, 79197, 82228, 82328, 82428, 83238, 85058, 86068, 86168, 86568, 87278, 87778, 89098
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Palindromes where A083146 differs from A083145.
First term with an even number of digits is a(389) = 66800866.  Chai Wah Wu, Apr 08 2016


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..389


EXAMPLE

The smallest palindromic proper multiple of 4 is 8, not the concatenation of 4 with itself, so 4 is not a term.
The smallest palindromic proper multiple of 5 is 55, the concatenation of 5 with itself, so 5 is a term.


CROSSREFS

Cf. A083145, A083146, A002113.
Sequence in context: A294239 A250050 A051052 * A088721 A325435 A288857
Adjacent sequences: A119365 A119366 A119367 * A119369 A119370 A119371


KEYWORD

base,nonn


AUTHOR

Franklin T. AdamsWatters, May 16 2006


STATUS

approved



