The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119335 Number triangle T(n,k) = Sum_{j=0..n-k} C(k,3j)*C(n-k,3j). 8
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 11, 17, 11, 1, 1, 1, 1, 1, 1, 21, 41, 41, 21, 1, 1, 1, 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1, 1, 1, 1, 57, 141, 201, 201, 141, 57, 1, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,25 COMMENTS Row sums are A119336. Product of Pascal's triangle and A119337. LINKS Seiichi Manyama, Rows n = 0..139, flattened FORMULA Column k has g.f. (x^k/(1-x)) * Sum_{j=0..k} C(k,3j)(x/(1-x))^(3j). EXAMPLE Triangle begins 1; 1, 1; 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1; 1, 1, 1, 2, 1, 1, 1; 1, 1, 1, 5, 5, 1, 1, 1; 1, 1, 1, 11, 17, 11, 1, 1, 1; 1, 1, 1, 21, 41, 41, 21, 1, 1, 1; 1, 1, 1, 36, 81, 101, 81, 36, 1, 1, 1; MATHEMATICA T[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 14 2023 *) CROSSREFS T(2n,n) gives A119363. Cf. A119326. Sequence in context: A225372 A184879 A373201 * A155869 A176564 A237717 Adjacent sequences: A119332 A119333 A119334 * A119336 A119337 A119338 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, May 14 2006 EXTENSIONS More terms from Seiichi Manyama, Mar 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 09:21 EDT 2024. Contains 375011 sequences. (Running on oeis4.)