|
|
A105652
|
|
Numbers k such that p1=2k+3, p2=4k+5 and p3=6k+7 are all prime.
|
|
6
|
|
|
0, 2, 17, 104, 134, 152, 164, 167, 299, 362, 584, 617, 647, 764, 827, 1109, 1139, 1277, 1517, 1529, 1532, 2129, 2222, 2399, 2474, 2612, 2789, 2924, 3074, 3179, 3344, 3419, 3482, 3809, 3839, 3842, 3932, 4007, 4082, 4094, 4142, 4259, 4262, 4322, 4469, 4544
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Except for 0, all terms == 2 or 14 (mod 15). - Robert Israel, Jun 08 2018
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = (A174734(n)-3)/2. - Robert Israel, Jun 08 2018
|
|
MAPLE
|
select(k -> andmap(isprime, [2*k+3, 4*k+5, 6*k+7]), [0, seq(seq(15*i+j, j=[2, 14]), i=0..1000)]); # Robert Israel, Jun 08 2018
|
|
PROG
|
(Magma) [n: n in [0..5000] | IsPrime(2*n+3) and IsPrime(4*n+5) and IsPrime(6*n+7)]; // Vincenzo Librandi, Nov 13 2010
|
|
CROSSREFS
|
Cf. A005382, A005383, A105610, A105653 - A105657, A174734.
Sequence in context: A272065 A129977 A213787 * A204238 A198796 A186104
Adjacent sequences: A105649 A105650 A105651 * A105653 A105654 A105655
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Apr 16 2005
|
|
STATUS
|
approved
|
|
|
|