|
|
A027220
|
|
a(n) = Sum_{k=0..n} (k+1) * A026736(n,n-k).
|
|
1
|
|
|
1, 3, 8, 20, 52, 121, 301, 675, 1628, 3570, 8426, 18202, 42288, 90374, 207464, 439800, 1000194, 2106961, 4755715, 9967599, 22359788, 46670273, 104154703, 216643945, 481381746, 998346275, 2210037191, 4571884119, 10088030640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
MATHEMATICA
|
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[(k+1)*T[n, n-k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jul 19 2019 *)
|
|
PROG
|
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1)
+ T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum((k+1)*T(n, n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 19 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|