login
A333679
Sum of the heights of all nonnegative lattice paths from (0,0) to (n,0) such that slopes of adjacent steps differ by at most one, assuming zero slope before and after the paths.
4
0, 0, 0, 1, 3, 8, 20, 53, 137, 375, 1035, 2878, 7988, 22308, 62642, 176692, 499818, 1418228, 4035568, 11512449, 32916181, 94313011, 270757747, 778694171, 2243200705, 6471953522, 18699169766, 54098598824, 156706773404, 454457344755, 1319382151919, 3834346819731
OFFSET
0,5
COMMENTS
The maximal height in all paths of length n is floor(ceil(n/2)^2/4) = A008642(n-3) for n>2.
MAPLE
b:= proc(x, y, t, h) option remember;
`if`(x=0, h, add(b(x-1, y+j, j, max(h, y)),
j=max(t-1, -y)..min(x*(x-1)/2-y, t+1)))
end:
a:= n-> b(n, 0$3):
seq(a(n), n=0..32);
MATHEMATICA
b[x_, y_, t_, h_] := b[x, y, t, h] =
If[x == 0, h, Sum[b[x - 1, y + j, j, Max[h, y]],
{j, Max[t - 1, -y], Min[x(x - 1)/2 - y, t + 1]}]];
a[n_] := b[n, 0, 0, 0];
a /@ Range[0, 32] (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 01 2020
STATUS
approved