Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 16 2016 04:24:23
%S 1,1,1,3,8,20,55,159,464,1383,4200,12910,40112,125832,397888,1266848,
%T 4058263,13070453,42297553,137467673,448499679,1468388784,4822816903,
%U 15886282268,52468807845,173718343364,576466929104,1916968549390,6387086400663,21319636605919,71284279000874,238724756808108,800659887614429,2689098091847122
%N G.f. A(x) satisfies: A(x) = x + A( x*A(x) + x*A(x)^3 ).
%C Compare g.f. to: C(x) = x + C( x*C(x) + x*C(x)^2 ) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
%H Paul D. Hanna, <a href="/A271843/b271843.txt">Table of n, a(n) for n = 1..300</a>
%F a(n) ~ c * d^n / n^(3/2), where d = 3.51361449558530219727... and c = 0.1466906366440109... . - _Vaclav Kotesovec_, Apr 16 2016
%e G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 20*x^6 + 55*x^7 + 159*x^8 + 464*x^9 + 1383*x^10 + 4200*x^11 + 12910*x^12 +...
%e where A(x) = x + A( x*A(x) + x*A(x)^3 ).
%e RELATED SERIES.
%e A(x) + A(x)^3 = x + x^2 + 2*x^3 + 6*x^4 + 14*x^5 + 36*x^6 + 103*x^7 + 297*x^8 + 867*x^9 + 2598*x^10 + 7908*x^11 + 24337*x^12 + 75725*x^13 + 237822*x^14
%e +...
%o (PARI) {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1,n, A = x + subst(A,x,x*A + x*A^3) ) ; polcoeff(A,n)}
%o for(n=1,40,print1(a(n),", "))
%K nonn
%O 1,4
%A _Paul D. Hanna_, Apr 15 2016