login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268042
a(n) = Ann(2n) where Ann(n) is the number of annular non-crossing matchings with n total endpoints.
0
1, 3, 8, 20, 57, 166, 538, 1762, 6045, 21040, 74628, 267598, 970134, 3544416, 13043650, 48283236, 179665425, 671564330, 2520312810, 9492124534, 35863942748, 135893383596, 516258841134, 1965906973886, 7502329984510, 28687263026656, 109893836400756, 421684916479018
OFFSET
0,2
LINKS
Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
FORMULA
a(n) = Sum_{i+j=n} A268041(i, j).
PROG
(PARI) tnnk(n, k) = if (!n && !k, 1, sumdiv(gcd(n, k), d, eulerphi(d)*binomial((2*n+k)/d, n/d))/(2*n+k));
tnmk(n, m, k) = if (k==0, tnnk(n, 0)*tnnk(m, 0), k*sumdiv(gcd(k, gcd(n, m)), d, eulerphi(d)*binomial((2*n+k)/d, n/d)*binomial((2*m+k)/d, m/d))/((2*n+k)*(2*m+k)));
ann(n, m) = {if ((n+m) % 2, return (0)); if (n<m, return (ann(m, n))); sum(k=0, m, if (!((n-k)%2) && !((m-k)%2), tnmk((n-k)/2, (m-k)/2, k), 0)); }
a(n) = sum(k=0, n, ann(n-k, k));
CROSSREFS
Sequence in context: A271843 A122228 A018790 * A009436 A354519 A302674
KEYWORD
nonn
AUTHOR
Michel Marcus, Jan 25 2016
STATUS
approved