login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354519
Expansion of e.g.f. exp(x) * log(sec(x)).
3
0, 1, 3, 8, 20, 61, 203, 888, 4080, 24001, 140283, 1028048, 7248020, 63374221, 522164243, 5299033488, 49924707840, 576514338721, 6110861416083, 79100066353208, 931434877343540, 13355627237749501, 172948115797623803, 2720827878727067208, 38424408320191299120
OFFSET
1,3
FORMULA
a(n) = Sum_{k=1..floor(n/2)} A000182(k) * binomial(n,2*k).
a(n) ~ 2^(n + 1/2) * (exp(Pi/2) + (-1)^n/exp(Pi/2)) * n^(n - 1/2) / (Pi^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Aug 17 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(exp(x)*log(1/cos(x)))))
(PARI) a(n) = sum(k=1, n\2, ((-4)^k-(-16)^k)*bernfrac(2*k)/(2*k)*binomial(n, 2*k));
(Python)
from math import comb
from sympy import bernoulli
def A354519(n): return sum(abs(((2-(2<<(m:=k<<1)))*bernoulli(m)<<m-2)//k)*comb(n, k<<1) for k in range(1, (n>>1)+1)) # Chai Wah Wu, Apr 15 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 16 2022
STATUS
approved