login
A268041
Table array: T(n,m) is the number of non-crossings matchings of curves embedded within an annulus with n exterior endpoints and m interior endpoints.
1
1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 4, 2, 3, 2, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 10, 5, 7, 3, 7, 3, 7, 5, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 14, 17, 8, 14, 8, 14, 8, 17, 14, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80, 42, 48, 24, 38, 20, 34, 20, 38, 24, 48, 42, 80
OFFSET
0,11
LINKS
Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), #16.2.4.
PROG
(PARI) tnnk(n, k) = if (!n && !k, 1, sumdiv(gcd(n, k), d, eulerphi(d)*binomial((2*n+k)/d, n/d))/(2*n+k));
tnmk(n, m, k) = if (k==0, tnnk(n, 0)*tnnk(m, 0), k*sumdiv(gcd(k, gcd(n, m)), d, eulerphi(d)*binomial((2*n+k)/d, n/d)*binomial((2*m+k)/d, m/d))/((2*n+k)*(2*m+k)));
a(n, m) = {if ((n+m) % 2, return (0)); if (n<m, return (a(m, n))); sum(k=0, m, if (!((n-k)%2) && !((m-k)%2), tnmk((n-k)/2, (m-k)/2, k), 0)); }
CROSSREFS
Cf. A267998.
Sequence in context: A140324 A323284 A010250 * A348248 A060024 A143668
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Jan 25 2016
STATUS
approved