login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268038
List of y-coordinates of point moving in clockwise square spiral.
15
0, 0, -1, -1, -1, 0, 1, 1, 1, 1, 0, -1, -2, -2, -2, -2, -2, -1, 0, 1, 2, 2, 2, 2, 2, 2, 1, 0, -1, -2, -3, -3, -3, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4
OFFSET
1,13
COMMENTS
This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - N. J. A. Sloane, Jul 17 2018
EXAMPLE
Sequence gives y-coordinate of the n-th point of the following spiral:
.
20--21--22--23--24--25
| |
19 6---7---8---9 26
| | | |
18 5 0---1 10 27
| | | | |
17 4---3---2 11 28
| | |
16--15--14--13--12 29
|
35--34--33--32--31--30
MATHEMATICA
a[n_] := a[n] = If[n==0, 0, a[n-1] + Cos[Mod[Floor[Sqrt[4*(n-1) + 1]], 4]* Pi/2]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 11 2018, after Seppo Mustonen *)
PROG
(PARI) L=1; d=-1;
for(r=1, 9, d=-d; k=floor(r/2)*d; for(j=1, L++, print1(k, ", ")); forstep(j=k-d, -floor((r+1)/2)*d+d, -d, print1(j, ", "))) \\ Hugo Pfoertner, Jul 28 2018
CROSSREFS
A174344 gives sequence of x-coordinates.
This is the negative of A274923.
The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - N. J. A. Sloane, Jul 17 2018
Sequence in context: A125088 A226456 A343642 * A274923 A249071 A231713
KEYWORD
sign,easy
AUTHOR
Peter Kagey, Jan 24 2016
STATUS
approved