%I #27 Aug 17 2018 21:09:17
%S 0,0,-1,-1,-1,0,1,1,1,1,0,-1,-2,-2,-2,-2,-2,-1,0,1,2,2,2,2,2,2,1,0,-1,
%T -2,-3,-3,-3,-3,-3,-3,-3,-2,-1,0,1,2,3,3,3,3,3,3,3,3,2,1,0,-1,-2,-3,
%U -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-2,-1,0,1,2,3,4,4,4
%N List of y-coordinates of point moving in clockwise square spiral.
%C This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - _N. J. A. Sloane_, Jul 17 2018
%H Peter Kagey, <a href="/A268038/b268038.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="https://oeis.org/plot2a?name1=A174344&name2=A268038&tform1=untransformed&tform2=untransformed&shift=0&radiop1=xy&drawlines=true">Visualization of spiral using Plot 2.</a> - _Hugo Pfoertner_, May 29 2018
%e Sequence gives y-coordinate of the n-th point of the following spiral:
%e .
%e 20--21--22--23--24--25
%e | |
%e 19 6---7---8---9 26
%e | | | |
%e 18 5 0---1 10 27
%e | | | | |
%e 17 4---3---2 11 28
%e | | |
%e 16--15--14--13--12 29
%e |
%e 35--34--33--32--31--30
%t a[n_] := a[n] = If[n==0, 0, a[n-1] + Cos[Mod[Floor[Sqrt[4*(n-1) + 1]], 4]* Pi/2]];
%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jun 11 2018, after _Seppo Mustonen_ *)
%o (PARI) L=1; d=-1;
%o for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ _Hugo Pfoertner_, Jul 28 2018
%Y A174344 gives sequence of x-coordinates.
%Y This is the negative of A274923.
%Y The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - _N. J. A. Sloane_, Jul 17 2018
%K sign,easy
%O 1,13
%A _Peter Kagey_, Jan 24 2016