Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 17 2018 21:09:17
%S 0,0,-1,-1,-1,0,1,1,1,1,0,-1,-2,-2,-2,-2,-2,-1,0,1,2,2,2,2,2,2,1,0,-1,
%T -2,-3,-3,-3,-3,-3,-3,-3,-2,-1,0,1,2,3,3,3,3,3,3,3,3,2,1,0,-1,-2,-3,
%U -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-2,-1,0,1,2,3,4,4,4
%N List of y-coordinates of point moving in clockwise square spiral.
%C This spiral, in either direction, is sometimes called the "Ulam spiral", but "square spiral" is a better name. (Ulam looked at the positions of the primes, but of course the spiral itself must be much older.) - _N. J. A. Sloane_, Jul 17 2018
%H Peter Kagey, <a href="/A268038/b268038.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="https://oeis.org/plot2a?name1=A174344&name2=A268038&tform1=untransformed&tform2=untransformed&shift=0&radiop1=xy&drawlines=true">Visualization of spiral using Plot 2.</a> - _Hugo Pfoertner_, May 29 2018
%e Sequence gives y-coordinate of the n-th point of the following spiral:
%e .
%e 20--21--22--23--24--25
%e | |
%e 19 6---7---8---9 26
%e | | | |
%e 18 5 0---1 10 27
%e | | | | |
%e 17 4---3---2 11 28
%e | | |
%e 16--15--14--13--12 29
%e |
%e 35--34--33--32--31--30
%t a[n_] := a[n] = If[n==0, 0, a[n-1] + Cos[Mod[Floor[Sqrt[4*(n-1) + 1]], 4]* Pi/2]];
%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jun 11 2018, after _Seppo Mustonen_ *)
%o (PARI) L=1; d=-1;
%o for(r=1,9,d=-d;k=floor(r/2)*d;for(j=1,L++,print1(k,", "));forstep(j=k-d,-floor((r+1)/2)*d+d,-d,print1(j,", "))) \\ _Hugo Pfoertner_, Jul 28 2018
%Y A174344 gives sequence of x-coordinates.
%Y This is the negative of A274923.
%Y The (x,y) coordinates for a point sweeping a quadrant by antidiagonals are (A025581, A002262). - _N. J. A. Sloane_, Jul 17 2018
%K sign,easy
%O 1,13
%A _Peter Kagey_, Jan 24 2016