login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206949 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with no 3-element antichain. 4
0, 0, 0, 3, 24, 135, 657, 2961, 12744, 53244, 218025, 880308, 3518721, 13961727, 55097091, 216546048, 848476296, 3316800555, 12942852624, 50437433079, 196347606849, 763752142233, 2969021213928, 11536374392820, 44809232564673, 173997851613660, 675501426136017 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Here, the term uniform is used in the sense of Retakh, Serconek and Wilson.  Graded is used in terms of Stanley's definition that all maximal chains have the same length n.

REFERENCES

Richard P. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

V. Retakh, S. Serconek and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.

Wikipedia, Graded poset

Index entries for linear recurrences with constant coefficients, signature (9,-27,30,-9).

FORMULA

a(n) = 9*a(n-1) - 27*a(n-2) + 30*a(n-3) - 9*a(n-4), a(1)=0, a(2)=0, a(3)=3, a(4)=24.

G.f.: (3*(1-x)*x^3)/((1-3*x)*(1-6*x+9*x^2-3*x^3)).

a(n) = A124292(n+1) - A025192(n).

MATHEMATICA

Join[{0}, LinearRecurrence[{9, -27, 30, -9}, {0, 0, 3, 24}, 40]]

PROG

(Python)

def a(n, adict={0:0, 1:0, 2:0, 3:3, 4:24}):

.if n in adict:

..return adict[n]

.adict[n]=9*a(n-1)-27*a(n-2)+30*a(n-3)-9*a(n-4)

.return adict[n]

CROSSREFS

Cf. A206950 (maximal element removed).

Cf. A206947, A206948 (requiring exactly two elements in each rank level above 0 with and without maximal element).

Sequence in context: A183900 A001089 A069515 * A215636 A056350 A056344

Adjacent sequences:  A206946 A206947 A206948 * A206950 A206951 A206952

KEYWORD

nonn,easy

AUTHOR

David Nacin, Feb 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 09:14 EDT 2020. Contains 336480 sequences. (Running on oeis4.)