login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261369
Expansion of (psi(-x^3) / f(x))^2 in powers of x where psi(), f() are Ramanujan theta functions.
3
1, -2, 5, -12, 24, -46, 86, -152, 262, -442, 725, -1168, 1852, -2886, 4436, -6736, 10103, -14994, 22040, -32092, 46336, -66380, 94378, -133256, 186926, -260576, 361126, -497716, 682340, -930774, 1263624, -1707672, 2297737, -3078850, 4109022, -5462924, 7236280
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * (eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q^2)^3 * eta(q^6)))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 4, -4, 2, -2, 4, -2, 2, -4, 4, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A262930. - Michael Somos, Nov 07 2015
a(n) = A187153(3*n + 2) = A213265(3*n + 2) = A262930(3*n + 2). - Michael Somos, Nov 07 2015
Convolution square of A139135. - Michael Somos, Nov 07 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)) / (8*3^(5/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 2*x + 5*x^2 - 12*x^3 + 24*x^4 - 46*x^5 + 86*x^6 - 152*x^7 + ...
G.f. = q^2 - 2*q^5 + 5*q^8 - 12*q^11 + 24*q^14 - 46*q^17 + 86*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(3/2)]^2 / (2 x^(3/4) QPochhammer[ -x]^2), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x^2 + A)^3 * eta(x^6 + A)))^2, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 16 2015
STATUS
approved