Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 11 2020 06:12:40
%S 1,6,22,63,155,342,700,1343,2463,4323,7361,12139,19581,30819,47697,
%T 72388,108390,159752,232833,334917,477270,672589,940222,1301954,
%U 1790117,2441168,3308341,4451294,5955870,7918574,10475192,13779096,18042899,23506156,30496836
%N Number of partitions of n into two sorts of parts having exactly 4 parts of the second sort.
%H Alois P. Heinz, <a href="/A258474/b258474.txt">Table of n, a(n) for n = 4..1000</a>
%p b:= proc(n, i) option remember; series(`if`(n=0, 1,
%p `if`(i<1, 0, add(b(n-i*j, i-1)*add(x^t*
%p binomial(j, t), t=0..min(4, j)), j=0..n/i))), x, 5)
%p end:
%p a:= n-> coeff(b(n$2), x, 4):
%p seq(a(n), n=4..40);
%t b[n_, i_] := b[n, i] = Series[If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*Sum[ x^t*Binomial[j, t], {t, 0, Min[4, j]}], {j, 0, n/i}]]], {x, 0, 5}];
%t a[n_] := Coefficient[b[n, n], x, 4];
%t a /@ Range[4, 40] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ *)
%Y Column k=4 of A256193.
%K nonn
%O 4,2
%A _Alois P. Heinz_, May 31 2015