login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257196
Expansion of (1 + x) * (1 + x^5) / ((1 + x^2) * (1 + x^4)) in powers of x.
3
1, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0
OFFSET
0,1
FORMULA
Euler transform of length 10 sequence [1, -2, 0, 0, 1, 0, 0, 1, 0, -1].
a(n) is multiplicative with a(2) = -1, a(2^e) = 0 if e>1, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4) and a(0) = 1.
G.f.: 1 + x / (1 + x^2) - x^2 / (1 + x^4).
G.f.: (1 + x) * (1 + x^5) / ((1 + x^2) * (1 + x^4)).
a(n) = -a(-n) for all n in Z unless n = 0. a(n+8) = a(n) unless n=0 or n=-8. a(4*n) = 0 unless n=0.
a(n) = A112299(n) unless n=0. - R. J. Mathar, Apr 19 2015
EXAMPLE
G.f. = 1 + x - x^2 - x^3 + x^5 + x^6 - x^7 + x^9 - x^10 - x^11 + x^13 + ...
MATHEMATICA
a[ n_] := Boole[n == 0] + {1, -1, -1, 0, 1, 1, -1, 0}[[Mod[ n, 8, 1]]];
a[ n_] := If[ n == 0, 1, Sign[ n] SeriesCoefficient[ (1 + x) * (1 + x^5) / ((1 + x^2) * (1 + x^4)), {x, 0, Abs @ n}]];
CoefficientList[Series[(1 + x)*(1 + x^5)/((1 + x^2)*(1 + x^4)), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
LinearRecurrence[{0, -1, 0, -1, 0, -1}, {1, 1, -1, -1, 0, 1, 1}, 100] (* Harvey P. Dale, Nov 16 2022 *)
PROG
(PARI) {a(n) = (n==0) + [0, 1, -1, -1, 0, 1, 1, -1][n%8 + 1]};
(PARI) {a(n) = if( n==0, 1, n%2, (-1)^(n\2), n%4 == 2, -(-1)^(n\4), 0)};
(PARI) {a(n) = if( n==0, 1, sign(n) * polcoeff( (1 + x) * (1 + x^5) / ((1 + x^2) * (1 + x^4)) + x * O(x^abs(n)), abs(n)))};
(PARI) x='x+O('x^60); Vec((1 + x)*(1 + x^5)/((1 + x^2)*(1 + x^4))) \\ G. C. Greubel, Aug 02 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1 + x)*(1 + x^5)/((1 + x^2)*(1 + x^4)))); // G. C. Greubel, Aug 02 2018
CROSSREFS
Cf. A112299.
Sequence in context: A071022 A155076 A328308 * A176137 A290808 A364252
KEYWORD
sign,mult,easy
AUTHOR
Michael Somos, Apr 17 2015
STATUS
approved