login
A176137
Number of partitions of n into distinct Catalan numbers, cf. A000108.
11
1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
a(n) <= 1;
a(A000108(n)) = 1; a(A141351(n)) = 1; a(A014138(n)) = 1.
A197433 gives all such numbers k that a(k) = 1, in other words, this is the characteristic function of A197433, and all three sequences mentioned above are its subsequences. - Antti Karttunen, Jun 25 2014
LINKS
FORMULA
a(n) = f(n,1,1) with f(m,k,c) = if c>m then 0^m else f(m-c,k+1,c') + f(m,k+1,c') where c'=2*c*(2*k+1)/(k+2).
EXAMPLE
56 = 42+14 = A000108(5)+A000108(4), all other sums of distinct Catalan numbers are not equal 56, therefore a(56)=1.
MATHEMATICA
nmax = 104;
A197433 = CoefficientList[(1/(1 - x))*Sum[ CatalanNumber[k + 1]*x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, nmax] // Ceiling}] + O[x]^nmax, x];
a[n_] := Boole[MemberQ[A197433, n]];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 18 2021, after Ilya Gutkovskiy in A197433 *)
PROG
(Scheme) (define (A176137 n) (if (zero? n) 1 (- (A244230 (+ n 1)) (A244230 n)))) ;; Antti Karttunen, Jun 25 2014
CROSSREFS
When right-shifted (prepended with 1) this sequence is the first differences of A244230.
Sequence in context: A155076 A328308 A257196 * A290808 A364252 A190239
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 09 2010
STATUS
approved