OFFSET
0,3
COMMENTS
Replace 2^k with A000108(k+1) in binary expansion of n.
From Antti Karttunen, Jun 22 2014: (Start)
On the other hand, A244158 is similar, but replaces 10^k with A000108(k+1) in decimal expansion of n.
This sequence gives all k such that A014418(k) = A239903(k), which are precisely all nonnegative integers k whose representations in those two number systems contain no digits larger than 1. From this also follows that this is a subsequence of A244155.
(End)
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..8191
FORMULA
For all n, A244230(a(n)) = n. - Antti Karttunen, Jul 18 2014
G.f.: (1/(1 - x))*Sum_{k>=0} Catalan number(k+1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017
MATHEMATICA
nmax = 63;
a[n_] := If[n == 0, 0, SeriesCoefficient[(1/(1-x))*Sum[CatalanNumber[k+1]* x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, n] // Ceiling}], {x, 0, n}]];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 18 2021, after Ilya Gutkovskiy *)
CROSSREFS
Characteristic function: A176137.
Subsequence of A244155.
Cf. A000108, A030308, A197432, A014418, A239903, A244158, A244159, A244230, A244231, A244232, A244315, A244316.
Cf. also A060112.
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Oct 15 2011
EXTENSIONS
Name clarified by Antti Karttunen, Jul 18 2014
STATUS
approved