login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060112
Sums of nonconsecutive factorial numbers.
13
0, 1, 2, 6, 7, 24, 25, 26, 120, 121, 122, 126, 127, 720, 721, 722, 726, 727, 744, 745, 746, 5040, 5041, 5042, 5046, 5047, 5064, 5065, 5066, 5160, 5161, 5162, 5166, 5167, 40320, 40321, 40322, 40326, 40327, 40344, 40345, 40346, 40440, 40441, 40442
OFFSET
1,3
COMMENTS
Zeckendorf (Fibonacci) expansion of n (A003714) reinterpreted as a factorial expansion.
Also positions in A055089, A060117 and A060118 of the permutations that are composed of disjoint adjacent transpositions only. (That these positions are same can be seen by comparing algorithms PermRevLexUnrankAMSD, PermUnrank3R, PermUnrank3L in the respective sequences). Thus also positions of the fixed terms in A065181-A065184. See comment at A065163.
Written as disjoint cycles the permutations are: (), (1 2), (2 3), (3 4), (1 2)(3 4), (4 5), (1 2)(4 5), (2 3)(4 5), etc. Apart from the first one (the identity), these are the only kind of permutations used in campanology when moving from one "change" to next.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Arthur T. White, Ringing the Changes, Math. Proc. Camb. Phil. Soc., September 1983, Vol. 94, part 2, pp. 203-215.
FORMULA
a(n) = PermRevLexRank(CampanoPerm(n))
a(A001611(n)) = (n-1)! for n > 2. - David A. Corneth, Jun 25 2017
EXAMPLE
Zeckendorf Expansions of first few natural numbers and the corresponding values when interpreted as factorial expansions: 0 = 0 = 0, 1 = 1 = 1, 2 = 10 = 2, 3 = 100 = 6, 4 = 101 = 7, 5 = 1000 = 24, 6 = 1001 = 25, 7 = 1010 = 26, 8 = 10000 = 120, etc.,
MAPLE
CampanoPerm := proc(n) local z, p, i; p := []; z := fibbinary(n); i := 1; while(z > 0) do if(1 = (z mod 2)) then p := permul(p, [[i, i+1]]); fi; i := i+1; z := floor(z/2); od; RETURN(convert(p, 'permlist', i)); end;
MATHEMATICA
With[{b = MixedRadix[Range[12, 2, -1]]}, FromDigits[#, b] & /@ Select[Tuples[{0, 1}, 8], SequenceCount[#, {1, 1}] == 0 &]] (* Michael De Vlieger, Jun 26 2017 *)
PROG
(PARI) fill(lim, k, val)=if(k>#f, return); my(t=val+f[k]); if(t<=lim, listput(v, t); fill(lim, k+2, t)); fill(lim, k+1, val)
list(lim)=my(k, t=1); local(f=List(), v=List([0])); while((t*=k++)<=lim, listput(f, t)); f=Vecrev(f); fill(lim, 1, 0); Set(v) \\ Charles R Greathouse IV, Jun 25 2017
(PARI) first(n) = my(res = [0, 1], k = 1, t = 1, p = 1); while(#res < n, k++; t++; p *= t; res = concat(res, vector(fibonacci(k), i, res[i]+p))); vector(n, i, res[i]) \\ David A. Corneth, Jun 26 2017
CROSSREFS
Subset of A059590. Cf. also A001611, A064640.
For PermRevLexRank, see A056019, for fibbinary see A048679 and A003714.
Sequence in context: A004791 A220946 A243795 * A057914 A216037 A250547
KEYWORD
nonn,easy,nice
AUTHOR
Antti Karttunen, Mar 01 2001
STATUS
approved