login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244315
a(0) = 0, after which, if A176137(n) = 1, a(n) = A007814(A244230(n)), otherwise a(n) = a(n-A197433(A244230(n)-1)).
3
0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 4, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 4, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 2, 3, 0, 1, 0, 0, 2, 0, 1, 0, 0, 1, 0, 5
OFFSET
0,6
COMMENTS
For n >= 1, a(n) tells the zero-based position of the digit (from the right) where the iteration stopped at, when constructing a Semigreedy Catalan representation of n as described in A244159.
LINKS
FORMULA
a(0) = 0, and for n >= 1, if A176137(n) = 1, a(n) = A007814(A244230(n)), otherwise a(n) = a(n-A197433(A244230(n)-1)).
PROG
(Scheme, two alternative versions)
;; This version is based on the given recurrence and uses memoizing definec-macro from Antti Karttunen's IntSeq-library:
(definec (A244315 n) (cond ((zero? n) n) ((not (zero? (A176137 n))) (A007814 (A244230 n))) (else (A244315 (- n (A197433 (-1+ (A244230 n))))))))
(define (A244315 n) (let outer_loop ((n n)) (let inner_loop ((n n) (i (A244160 n))) (cond ((zero? n) i) ((zero? i) (outer_loop n)) ((<= (A000108 i) n) (inner_loop (- n (A000108 i)) (- i 1))) (else (inner_loop n (- i 1)))))))
CROSSREFS
One less than A244316.
Sequence in context: A283497 A265507 A035145 * A214303 A281274 A191250
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2014
STATUS
approved