This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281274 Expansion of Product_{j>=1} (1 + x^(Sum_{i=1..j} prime(i))). 2
 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 0, 2, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 3, 0, 3, 0, 1, 2, 0, 2, 0, 0, 2, 1, 2, 1, 0, 2, 1, 3, 1, 2, 0, 2, 1, 1, 2, 0, 2, 1, 3, 2, 2, 1, 1, 2, 2, 2, 2, 0, 3, 0, 2, 2, 1, 4, 1, 3, 2, 3, 2, 2, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,18 COMMENTS Number of partitions of n into distinct nonzero partial sums of primes (A007504). LINKS Eric Weisstein's World of Mathematics, Prime Sums Eric Weisstein's World of Mathematics, Prime Partition FORMULA G.f.: Product_{j>=1} (1 + x^(Sum_{i=1..j} prime(i))). EXAMPLE a(17) = 2 because we have [17] and [10, 5, 2], where 2 = prime(1), 5 = prime(1) + prime(2), 10 = prime(1) + prime(2) + prime(3), 17 = prime(1) + prime(2) + prime(3) + prime(4). MATHEMATICA nmax = 110; CoefficientList[Series[Product[1 + x^Sum[Prime[i], {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000586, A000607, A007504, A281273. Sequence in context: A035145 A244315 A214303 * A191250 A107064 A113687 Adjacent sequences:  A281271 A281272 A281273 * A281275 A281276 A281277 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 01:33 EST 2019. Contains 319351 sequences. (Running on oeis4.)