|
|
A176140
|
|
Semiprimes s such that both s + 3 and s - 3 are primes.
|
|
0
|
|
|
10, 14, 26, 34, 86, 106, 134, 194, 226, 254, 274, 314, 334, 386, 446, 566, 974, 1094, 1126, 1226, 1234, 1286, 1294, 1486, 1546, 1874, 2066, 2374, 2386, 2554, 2854, 2906, 2966, 3086, 3166, 3254, 3326, 3466, 3694, 4054, 4286, 4594, 4786, 4874, 4934, 4954
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
2*5=10-+3->7,13 primes,...
|
|
LINKS
|
|
|
MATHEMATICA
|
f[n_]:=Last/@FactorInteger[n]=={1, 1}; lst={}; Do[If[f[n]&&PrimeQ[n-3]&&PrimeQ[n+3], AppendTo[lst, n]], {n, 0, 4*7!}]; lst
Select[Range[5000], PrimeOmega[#]==2&&AllTrue[#+{3, -3}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 05 2017 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|