|
|
A176143
|
|
McKay-Thompson series of class 16C for the Monster group with a(0) = 2.
|
|
5
|
|
|
1, 2, 8, 16, 34, 64, 112, 192, 319, 512, 808, 1248, 1886, 2816, 4144, 6016, 8643, 12288, 17296, 24144, 33442, 45952, 62720, 85056, 114620, 153600, 204728, 271456, 358204, 470528, 615344, 801408, 1039621, 1343488, 1729920, 2219808, 2838920, 3619136, 4599664
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Expansion of (1/q) * chi(-q^4)^5 * chi(-q^8)^2 / (chi(-q)^2 * chi(-q^2)^5) = (1/q) * chi(q)^2 * chi(q^4)^2 * chi(-q^4)^7 / chi(-q^2)^7 = (1/q) * chi(-q^8)^7 / (chi(q)^5 * chi(-q)^7 * chi(q^4)^5) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q^4)^10 / (eta(q)^2 * eta(q^2)^3 * eta(q^8)^3 * eta(q^16)^2) in powers of q.
Euler transform of period 16 sequence [2, 5, 2, -5, 2, 5, 2, -2, 2, 5, 2, -5, 2, 5, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = f(t) where q = exp(2 Pi i t).
Expansion of (1/q) * chi(q)^2 * chi(q^2)^7 * chi(q^4)^2 in powers of q. - Michael Somos, Feb 09 2019
|
|
EXAMPLE
|
G.f. = 1/q + 2 + 8*q + 16*q^2 + 34*q^3 + 64*q^4 + 112*q^5 + 192*q^6 + 319*q^7 + ...
|
|
MATHEMATICA
|
QP = QPochhammer; s = QP[q^4]^10 / (QP[q]^2 * QP[q^2]^3 * QP[q^8]^3 * QP[q^16]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
a[ n_] := SeriesCoefficient[ q^-1 QPochhammer[ -q, q^2]^2 QPochhammer[ -q^2, q^4]^7 QPochhammer[ -q^4, q^8]^2, {q, 0, n}]; (* Michael Somos, Feb 09 2019 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^4 + A)^10 / (eta(x + A)^2 * eta(x^2 + A)^3 * eta(x^8 + A)^3 * eta(x^16 + A)^2), n))};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|