OFFSET
1,1
COMMENTS
LINKS
FORMULA
a(n) = 2^(floor((4*n+1)/3)).
a(n) = a(n-1) * a(n-3) / a(n-4) for n > 4.
From Stefano Spezia, Sep 04 2021: (Start)
G.f.: 2*x*(1 + 4*x + 8*x^2)/(1 - 16*x^3).
a(n) = 16*a(n-3) for n > 3. (End)
EXAMPLE
All positive integers cannot be colored with two colors without any positive integer x being the same color as a(1)*x = 2*x or 4*x, since at least two elements of the set {2, 4, 8} have to be the same color, which violates the condition.
MATHEMATICA
Rest@ CoefficientList[Series[2 x (1 + 4 x + 8 x^2)/(1 - 16 x^3), {x, 0, 30}], x] (* Michael De Vlieger, Oct 12 2021 *)
PROG
(PARI) A346461(n) = (1<<((4*(1+n)-3)\3)); \\ Antti Karttunen, Nov 11 2021
(Python)
print([2 ** ((4 * n + 1) // 3) for n in range(1, 31)])
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. Eren Kesim, Sep 04 2021
STATUS
approved