|
|
A296946
|
|
Number of n X 2 0..1 arrays with each 1 adjacent to 1, 3 or 5 king-move neighboring 1s.
|
|
1
|
|
|
2, 8, 16, 36, 112, 256, 608, 1680, 4064, 9920, 25984, 64320, 159232, 407296, 1017344, 2536704, 6420992, 16093184, 40271872, 101471232, 254636032, 638328832, 1605165056, 4029763584, 10110525440, 25402425344, 63780978688, 160088997888
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 8*a(n-3) - 12*a(n-4).
Empirical g.f.: 2*x*(1 + 2*x - 6*x^3) / (1 - 2*x - 8*x^3 + 12*x^4). - Colin Barker, Feb 25 2019
|
|
EXAMPLE
|
Some solutions for n=7:
..0..0. .1..1. .1..1. .1..0. .1..1. .1..1. .0..1. .1..1. .0..0. .0..0
..1..1. .0..0. .0..0. .0..1. .0..0. .0..0. .0..1. .1..1. .0..0. .1..1
..0..0. .1..1. .0..1. .1..1. .0..1. .1..1. .1..1. .1..1. .0..0. .1..1
..1..1. .0..0. .0..1. .1..0. .0..1. .1..1. .1..0. .0..0. .1..1. .0..0
..0..0. .0..0. .0..0. .1..0. .1..1. .0..0. .0..1. .1..1. .1..1. .1..1
..0..0. .0..1. .0..1. .0..0. .0..1. .0..1. .0..0. .0..0. .0..0. .1..1
..1..1. .0..1. .1..0. .1..1. .1..0. .1..0. .0..0. .0..0. .1..1. .1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|