login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001779
Expansion of 1/((1+x)(1-x)^8).
6
1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
OFFSET
0,2
COMMENTS
a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007
LINKS
Index entries for linear recurrences with constant coefficients, signature (7,-20,28,-14,-14,28,-20,7,-1).
FORMULA
a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021
MAPLE
A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
seq(A001779(n), n=0..50) ; # R. J. Mathar, Mar 22 2011
MATHEMATICA
CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
LinearRecurrence[{7, -20, 28, -14, -14, 28, -20, 7, -1}, {1, 7, 29, 91, 239, 553, 1163, 2269, 4166}, 30] (* Harvey P. Dale, Jan 21 2023 *)
PROG
(Magma) [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012
CROSSREFS
Cf. A001769 (first differences), A169795 (binomial transf.)
Sequence in context: A114043 A331767 A166189 * A257201 A258475 A320753
KEYWORD
nonn,easy
STATUS
approved