login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320754 Number of partitions of n with eight kinds of 1. 2
1, 8, 37, 129, 376, 966, 2258, 4902, 10026, 19520, 36459, 65721, 114877, 195454, 324706, 528069, 842531, 1321214, 2039553, 3103562, 4660814, 6914927, 10144558, 14728160, 21176077, 30171935, 42625765, 59741868, 83105140, 114790422, 157500479, 214739450 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: 1/(1-x)^8 * 1/Product_{j>1} (1-x^j).
Euler transform of 8,1,1,1,... .
a(n) ~ 2^(3/2) * 3^3 * n^(5/2) * exp(Pi*sqrt(2*n/3)) / Pi^7. - Vaclav Kotesovec, Oct 24 2018
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+7)*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40);
MATHEMATICA
nmax = 50; CoefficientList[Series[1/((1-x)^7 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *)
PROG
(PARI) x='x+O('x^40); Vec(1/((1-x)^8*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018
CROSSREFS
Column k=8 of A292508.
Sequence in context: A052387 A001780 A258476 * A053296 A055799 A035038
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 02:01 EDT 2023. Contains 362992 sequences. (Running on oeis4.)