The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320754 Number of partitions of n with eight kinds of 1. 2
 1, 8, 37, 129, 376, 966, 2258, 4902, 10026, 19520, 36459, 65721, 114877, 195454, 324706, 528069, 842531, 1321214, 2039553, 3103562, 4660814, 6914927, 10144558, 14728160, 21176077, 30171935, 42625765, 59741868, 83105140, 114790422, 157500479, 214739450 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA G.f.: 1/(1-x)^8 * 1/Product_{j>1} (1-x^j). Euler transform of 8,1,1,1,... . a(n) ~ 2^(3/2) * 3^3 * n^(5/2) * exp(Pi*sqrt(2*n/3)) / Pi^7. - Vaclav Kotesovec, Oct 24 2018 MAPLE a:= proc(n) option remember; `if`(n=0, 1, add( (numtheory[sigma](j)+7)*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); MATHEMATICA nmax = 50; CoefficientList[Series[1/((1-x)^7 * Product[1-x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 24 2018 *) PROG (PARI) x='x+O('x^40); Vec(1/((1-x)^8*prod(j=2, 40, 1-x^j))) \\ G. C. Greubel, Oct 27 2018 (Magma) m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(&*[1-x^j: j in [2..30]])))); // G. C. Greubel, Oct 27 2018 CROSSREFS Column k=8 of A292508. Sequence in context: A052387 A001780 A258476 * A053296 A055799 A035038 Adjacent sequences: A320751 A320752 A320753 * A320755 A320756 A320757 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 02:01 EDT 2023. Contains 362992 sequences. (Running on oeis4.)