login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055803
a(n) = T(n,n-3), array T as in A055801.
9
1, 1, 1, 2, 3, 5, 7, 11, 14, 21, 25, 36, 41, 57, 63, 85, 92, 121, 129, 166, 175, 221, 231, 287, 298, 365, 377, 456, 469, 561, 575, 681, 696, 817, 833, 970, 987, 1141, 1159, 1331, 1350, 1541, 1561, 1772, 1793, 2025, 2047, 2301
OFFSET
3,4
COMMENTS
Third differences seem to be A002620(n)+1.
FORMULA
From Colin Barker, Nov 28 2014: (Start)
a(n) = (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 for n>3.
G.f.: x^3*(1 -3*x^2 +x^3 +4*x^4 -x^5 -2*x^6 +x^7)/((1-x)^4*(1+x)^3). (End)
E.g.f.: ( 8*(x^3 -3*x^2 +6*x -6) +(x^3 -3*x^2 +39*x +48)*cosh(x) +(x^3 -6*x^2 +3*x -87)*sinh(x) )/48. - G. C. Greubel, Jan 23 2020
MAPLE
seq( `if`(n=3, 1, (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96), n=3..60); # G. C. Greubel, Jan 23 2020
MATHEMATICA
Table[If[n==3, 1, (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96], {n, 3, 60}] (* G. C. Greubel, Jan 23 2020 *)
LinearRecurrence[{1, 3, -3, -3, 3, 1, -1}, {1, 1, 1, 2, 3, 5, 7, 11}, 50] (* Harvey P. Dale, Jan 28 2023 *)
PROG
(PARI) vector(60, n, my(m=n+2); if(m==3, 1, (-39 +55*m -15*m^2 +2*m^3 +(-1)^m*(135 -39*m +3*m^2))/96)) \\ G. C. Greubel, Jan 23 2020
(Magma) [1] cat [(-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96: n in [4..60]]; // G. C. Greubel, Jan 23 2020
(Sage) [1]+[(-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 for n in (4..60)] # G. C. Greubel, Jan 23 2020
(GAP) Concatenation([1], List([4..60], n-> (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 )); # G. C. Greubel, Jan 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2000
STATUS
approved