login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(n,n-3), array T as in A055801.
9

%I #17 Jan 28 2023 11:29:18

%S 1,1,1,2,3,5,7,11,14,21,25,36,41,57,63,85,92,121,129,166,175,221,231,

%T 287,298,365,377,456,469,561,575,681,696,817,833,970,987,1141,1159,

%U 1331,1350,1541,1561,1772,1793,2025,2047,2301

%N a(n) = T(n,n-3), array T as in A055801.

%C Third differences seem to be A002620(n)+1.

%H G. C. Greubel, <a href="/A055803/b055803.txt">Table of n, a(n) for n = 3..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).

%F From _Colin Barker_, Nov 28 2014: (Start)

%F a(n) = (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 for n>3.

%F G.f.: x^3*(1 -3*x^2 +x^3 +4*x^4 -x^5 -2*x^6 +x^7)/((1-x)^4*(1+x)^3). (End)

%F E.g.f.: ( 8*(x^3 -3*x^2 +6*x -6) +(x^3 -3*x^2 +39*x +48)*cosh(x) +(x^3 -6*x^2 +3*x -87)*sinh(x) )/48. - _G. C. Greubel_, Jan 23 2020

%p seq( `if`(n=3, 1, (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96), n=3..60); # _G. C. Greubel_, Jan 23 2020

%t Table[If[n==3, 1, (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96], {n,3,60}] (* _G. C. Greubel_, Jan 23 2020 *)

%t LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,1,1,2,3,5,7,11},50] (* _Harvey P. Dale_, Jan 28 2023 *)

%o (PARI) vector(60, n, my(m=n+2); if(m==3, 1, (-39 +55*m -15*m^2 +2*m^3 +(-1)^m*(135 -39*m +3*m^2))/96)) \\ _G. C. Greubel_, Jan 23 2020

%o (Magma) [1] cat [(-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96: n in [4..60]]; // _G. C. Greubel_, Jan 23 2020

%o (Sage) [1]+[(-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 for n in (4..60)] # _G. C. Greubel_, Jan 23 2020

%o (GAP) Concatenation([1], List([4..60], n-> (-39 +55*n -15*n^2 +2*n^3 +(-1)^n*(135 -39*n +3*n^2))/96 )); # _G. C. Greubel_, Jan 23 2020

%Y Cf. A055801, A055802, A055804, A055805, A055806.

%K nonn

%O 3,4

%A _Clark Kimberling_, May 28 2000