login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070289 Number of distinct values of multinomial coefficients ( n / (p1, p2, p3, ...) ) where (p1, p2, p3, ...) runs over all partitions of n. 18
1, 1, 2, 3, 5, 7, 11, 14, 20, 27, 36, 47, 64, 79, 102, 125, 157, 193, 243, 296, 366, 441, 538, 639, 773, 911, 1092, 1294, 1532, 1799, 2131, 2475, 2901, 3369, 3935, 4554, 5292, 6084, 7033, 8087, 9292, 10617, 12198, 13880, 15874, 18039, 20541, 23263, 26414, 29838 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..92

Sergei Viznyuk, C-Program, C-Program, local copy.

FORMULA

a(n) = A215520(n,n) = A215521(2*n,n). - Alois P. Heinz, Nov 08 2012

MAPLE

b:= proc(n, i) option remember;

      if n=0 then {1} elif i<1 then {} else {b(n, i-1)[],

         seq(map(x-> x*i!^j, b(n-i*j, i-1))[], j=1..n/i)} fi

    end:

a:= n-> nops(b(n, n)):

seq(a(n), n=0..50);  # Alois P. Heinz, Aug 14 2012

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Union[Join[b[n, i-1], Flatten[ Table[Function[{x}, x*i!^j] /@ b[n-i*j, i-1], {j, 1, n/i}]]]]]]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Mar 23 2015, after Alois P. Heinz *)

PROG

(Sage)

def A070289(n):

    P = Partitions(n)

    M = set(multinomial(list(x)) for x in P)

    return len(M)

[A070289(n) for n in range(20)]

# Joerg Arndt, Aug 14 2012

CROSSREFS

Cf. A000041, A036038, A212855, A309951, A309999, A325305.

Sequence in context: A001402 A008629 A238864 * A035961 A051056 A055803

Adjacent sequences:  A070286 A070287 A070288 * A070290 A070291 A070292

KEYWORD

nonn

AUTHOR

Naohiro Nomoto, May 12 2002

EXTENSIONS

Terms a(n) for n >= 45 corrected by Joerg Arndt and Alois P. Heinz, Aug 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 04:38 EDT 2020. Contains 336368 sequences. (Running on oeis4.)