login
A318330
The 10-adic integer a_3 = ...25000000033 satisfying a_3^5 + 1 = a_4, a_4^5 + 1 = a_5, ... , a_1^5+ 1 = a_2 and a_2^5 + 1 = a_3.
10
3, 3, 0, 0, 0, 0, 0, 0, 0, 5, 2, 1, 7, 0, 4, 8, 5, 3, 9, 5, 1, 5, 6, 5, 3, 0, 8, 5, 6, 2, 9, 9, 0, 5, 0, 0, 1, 7, 4, 0, 9, 5, 4, 7, 9, 6, 1, 0, 8, 4, 5, 9, 1, 1, 8, 1, 2, 6, 3, 3, 3, 5, 6, 9, 0, 5, 6, 5, 1, 0, 8, 6, 3, 3, 4, 5, 4, 0, 5, 3, 7, 7, 7, 3, 6, 7, 2, 7, 1, 7, 4, 5
OFFSET
0,1
LINKS
EXAMPLE
25000000033^5 + 1 == 25039135394 (mod 10^11),
25039135394^5 + 1 == 85011784225 (mod 10^11),
85011784225^5 + 1 == 17275390626 (mod 10^11),
17275390626^5 + 1 == 89599609377 (mod 10^11),
89599609377^5 + 1 == 74462890658 (mod 10^11),
74462890658^5 + 1 == 75576244769 (mod 10^11),
75576244769^5 + 1 == 34474674850 (mod 10^11),
34474674850^5 + 1 == 67812500001 (mod 10^11),
67812500001^5 + 1 == 39062500002 (mod 10^11),
39062500002^5 + 1 == 25000000033 (mod 10^11).
CROSSREFS
Cf. A318327 (a_0), A318328 (a_1), A318329 (a_2), this sequence (a_3), A318331 (a_4), A318332 (a_5), A318333 (a_6), A318334 (a_7), A318335 (a_8), A318336 (a_9).
Sequence in context: A036113 A226840 A334885 * A199261 A110492 A225413
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved