login
A318331
The 10-adic integer a_4 = ...25039135394 satisfying a_4^5 + 1 = a_5, a_5^5 + 1 = a_6, ... , a_2^5+ 1 = a_3 and a_3^5 + 1 = a_4.
10
4, 9, 3, 5, 3, 1, 9, 3, 0, 5, 2, 6, 5, 3, 4, 0, 8, 6, 7, 5, 6, 3, 1, 4, 9, 2, 6, 6, 0, 8, 3, 0, 0, 5, 4, 6, 7, 9, 2, 3, 9, 7, 3, 5, 6, 3, 2, 9, 7, 2, 4, 7, 2, 5, 4, 4, 8, 7, 3, 7, 8, 0, 3, 7, 3, 2, 1, 8, 5, 6, 6, 8, 3, 4, 6, 3, 4, 8, 8, 0, 5, 0, 9, 0, 6, 0, 8, 5, 9, 8, 9
OFFSET
0,1
LINKS
EXAMPLE
25039135394^5 + 1 == 85011784225 (mod 10^11),
85011784225^5 + 1 == 17275390626 (mod 10^11),
17275390626^5 + 1 == 89599609377 (mod 10^11),
89599609377^5 + 1 == 74462890658 (mod 10^11),
74462890658^5 + 1 == 75576244769 (mod 10^11),
75576244769^5 + 1 == 34474674850 (mod 10^11),
34474674850^5 + 1 == 67812500001 (mod 10^11),
67812500001^5 + 1 == 39062500002 (mod 10^11),
39062500002^5 + 1 == 25000000033 (mod 10^11),
25000000033^5 + 1 == 25039135394 (mod 10^11).
CROSSREFS
Cf. A318327 (a_0), A318328 (a_1), A318329 (a_2), A318330 (a_3), this sequence (a_4), A318332 (a_5), A318333 (a_6), A318334 (a_7), A318335 (a_8), A318336 (a_9).
Sequence in context: A102753 A200416 A199178 * A198828 A200369 A226094
KEYWORD
nonn,base
AUTHOR
Seiichi Manyama, Aug 24 2018
STATUS
approved