OFFSET
0,8
COMMENTS
Although this entry is the last of the versions of the underlying triangle to be added to the OEIS, for some applications it is the most important.
Row n has 2n+1 entries.
A001498 has a b-file.
LINKS
Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
FORMULA
E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)
EXAMPLE
Triangle begins:
1
0 1 1
0 0 1 3 3
0 0 0 1 6 15 15
0 0 0 0 1 10 45 105 105
0 0 0 0 0 1 15 105 420 945 945
0 0 0 0 0 0 1 21 210 1260 4725 10395 10395
...
MATHEMATICA
Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k, 0, n}], 2*n+1, 0], {n, 0, 12}]] (* Jean-François Alcover, Oct 14 2011 *)
PROG
(Haskell)
a144331 n k = a144331_tabf !! n !! k
a144331_row n = a144331_tabf !! n
a144331_tabf = iterate (\xs ->
zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0, 0] ++ xs)) [1]
-- Reinhard Zumkeller, Nov 24 2014
(Magma)
A144331:= func< n, k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >;
[A144331(n, k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
(SageMath)
def A144331(n, k): return 0 if k<n else factorial(k)/(2^(k-n)*factorial(2*n-k)*factorial(k-n))
flatten([[A144331(n, k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023
CROSSREFS
See A144385 for a generalization.
KEYWORD
nonn,tabf,nice
AUTHOR
David Applegate and N. J. A. Sloane, Dec 07 2008
STATUS
approved