login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144331
Triangle b(n,k) for n >= 0, 0 <= k <= 2n, read by rows. See A144299 for definition and properties.
7
1, 0, 1, 1, 0, 0, 1, 3, 3, 0, 0, 0, 1, 6, 15, 15, 0, 0, 0, 0, 1, 10, 45, 105, 105, 0, 0, 0, 0, 0, 1, 15, 105, 420, 945, 945, 0, 0, 0, 0, 0, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 0, 0, 0, 0, 0, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 0, 0, 0, 0, 0
OFFSET
0,8
COMMENTS
Although this entry is the last of the versions of the underlying triangle to be added to the OEIS, for some applications it is the most important.
Row n has 2n+1 entries.
A001498 has a b-file.
LINKS
Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
FORMULA
E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)
EXAMPLE
Triangle begins:
1
0 1 1
0 0 1 3 3
0 0 0 1 6 15 15
0 0 0 0 1 10 45 105 105
0 0 0 0 0 1 15 105 420 945 945
0 0 0 0 0 0 1 21 210 1260 4725 10395 10395
...
MATHEMATICA
Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k, 0, n}], 2*n+1, 0], {n, 0, 12}]] (* Jean-François Alcover, Oct 14 2011 *)
PROG
(Haskell)
a144331 n k = a144331_tabf !! n !! k
a144331_row n = a144331_tabf !! n
a144331_tabf = iterate (\xs ->
zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0, 0] ++ xs)) [1]
-- Reinhard Zumkeller, Nov 24 2014
(Magma)
A144331:= func< n, k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >;
[A144331(n, k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
(SageMath)
def A144331(n, k): return 0 if k<n else factorial(k)/(2^(k-n)*factorial(2*n-k)*factorial(k-n))
flatten([[A144331(n, k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023
CROSSREFS
Row sums give A001515, column sums A000085.
Other versions of this triangle are given in A001497, A001498, A111924 and A100861.
See A144385 for a generalization.
Sequence in context: A110492 A225413 A180995 * A216805 A167259 A303650
KEYWORD
nonn,tabf,nice
AUTHOR
STATUS
approved