login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366457
a(n) = n^2 + 58.
1
58, 59, 62, 67, 74, 83, 94, 107, 122, 139, 158, 179, 202, 227, 254, 283, 314, 347, 382, 419, 458, 499, 542, 587, 634, 683, 734, 787, 842, 899, 958, 1019, 1082, 1147, 1214, 1283, 1354, 1427, 1502, 1579, 1658, 1739, 1822, 1907, 1994, 2083, 2174, 2267, 2362, 2459, 2558, 2659, 2762, 2867, 2974, 3083
OFFSET
0,1
COMMENTS
Leonhard Euler observed that the polynomial n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. Legendre showed that the first 29 terms of 2*n^2 + 29 (n = 0 to 28) are primes.
For even n = 2*m we have a(n) = 2*(2*m^2 + 29). It follows that a(n) is double a prime for the 29 even values of n in the integer interval [0, 57]. Calculation shows that a(n) takes distinct prime values for the 29 odd values of n in the interval [0, 57], except for a(29) = 29*31, a(33) = 31*37, a(41) = 37*47 and a(53) = 47*61. See the example section below.
The polynomial n^2 + 232 has similar properties. See A048988.
LINKS
Eric Weisstein's World of Mathematics, Euler Prime
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
FORMULA
G.f.: (59*x^2 - 115*x + 58)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 58, a(1) = 59 and a(2) = 62.
Sum_{n>=0} 1/a(n) = (1+sqrt(58)*Pi*coth(sqrt(58)*Pi))/116 = 0.2148763... - R. J. Mathar, Apr 24 2024
EXAMPLE
The sequence terms factorized for 0 <= n <= 57:
[2*29, 59, 2*31, 67, 2*37, 83, 2*47, 107, 2*61, 139, 2*79, 179, 2*101, 227, 2*127, 283, 2*157, 347, 2*191, 419, 2*229, 499, 2*271, 587, 2*317, 683, 2*367, 787, 2*421, (29*31), 2*479, 1019, 2*541, (31*37), 2*607, 1283, 2*677, 1427, 2*751, 1579, 2*829, (37*47), 2*911, 1907, 2*997, 2083, 2*1087, 2267, 2*1181, 2459, 2*1279, 2659, 2*1381, (47*61), 2*1487, 3083, 2*1597, 3307].
MAPLE
seq(n^2 + 58, n = 0..50);
MATHEMATICA
Table[n^2 + 58, {n, 0, 50}]
PROG
(PARI) vector(50, n, n^2 + 58)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Oct 10 2023
STATUS
approved