login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^2 + 58.
1

%I #20 Apr 24 2024 05:36:14

%S 58,59,62,67,74,83,94,107,122,139,158,179,202,227,254,283,314,347,382,

%T 419,458,499,542,587,634,683,734,787,842,899,958,1019,1082,1147,1214,

%U 1283,1354,1427,1502,1579,1658,1739,1822,1907,1994,2083,2174,2267,2362,2459,2558,2659,2762,2867,2974,3083

%N a(n) = n^2 + 58.

%C Leonhard Euler observed that the polynomial n^2 + n + 41 takes distinct prime values for the 40 consecutive integers n = 0 to 39. Legendre showed that the first 29 terms of 2*n^2 + 29 (n = 0 to 28) are primes.

%C For even n = 2*m we have a(n) = 2*(2*m^2 + 29). It follows that a(n) is double a prime for the 29 even values of n in the integer interval [0, 57]. Calculation shows that a(n) takes distinct prime values for the 29 odd values of n in the interval [0, 57], except for a(29) = 29*31, a(33) = 31*37, a(41) = 37*47 and a(53) = 47*61. See the example section below.

%C The polynomial n^2 + 232 has similar properties. See A048988.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPrime.html">Euler Prime</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: (59*x^2 - 115*x + 58)/(1 - x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 58, a(1) = 59 and a(2) = 62.

%F Sum_{n>=0} 1/a(n) = (1+sqrt(58)*Pi*coth(sqrt(58)*Pi))/116 = 0.2148763... - _R. J. Mathar_, Apr 24 2024

%e The sequence terms factorized for 0 <= n <= 57:

%e [2*29, 59, 2*31, 67, 2*37, 83, 2*47, 107, 2*61, 139, 2*79, 179, 2*101, 227, 2*127, 283, 2*157, 347, 2*191, 419, 2*229, 499, 2*271, 587, 2*317, 683, 2*367, 787, 2*421, (29*31), 2*479, 1019, 2*541, (31*37), 2*607, 1283, 2*677, 1427, 2*751, 1579, 2*829, (37*47), 2*911, 1907, 2*997, 2083, 2*1087, 2267, 2*1181, 2459, 2*1279, 2659, 2*1381, (47*61), 2*1487, 3083, 2*1597, 3307].

%p seq(n^2 + 58, n = 0..50);

%t Table[n^2 + 58, {n, 0, 50}]

%o (PARI) vector(50, n, n^2 + 58)

%Y Cf. A005846, A007641, A048988, A330363, A366458.

%K nonn,easy

%O 0,1

%A _Peter Bala_, Oct 10 2023