login
A366454
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(3/2).
4
1, 2, -3, 12, -58, 312, -1794, 10794, -67113, 427800, -2780677, 18360504, -122809416, 830379966, -5666465445, 38974338126, -269915089194, 1880576960904, -13172489198859, 92705253700620, -655219698720486, 4648722344211012, -33096948925057703
OFFSET
0,2
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366400.
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k/2-1,k) * binomial(n+3*k/2-2,n-k) / (5*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k/2-1, k)*binomial(n+3*k/2-2, n-k)/(5*k/2-1));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2023
STATUS
approved