login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286985
Number of connected dominating sets in the n-prism graph.
1
7, 7, 39, 115, 343, 967, 2663, 7203, 19239, 50887, 133543, 348179, 902775, 2329607, 5986535, 15327555, 39115847, 99532423, 252601127, 639548595, 1615746455, 4073951559, 10253517671, 25763632995, 64635943783, 161928486727, 405134009511, 1012371656275
OFFSET
1,1
COMMENTS
Sequence extrapolated to a(1) and a(2) using recurrence. - Andrew Howroyd, Sep 04 2017
LINKS
Eric Weisstein's World of Mathematics, Connected Dominating Set
Eric Weisstein's World of Mathematics, Prism Graph
FORMULA
From Andrew Howroyd, Sep 04 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 4*a(n-3) + 5*a(n-4) - 2*a(n-5) - a(n-6) for n > 6.
G.f.: x*(7 - 35*x + 74*x^2 - 70*x^3 + 19*x^4 - 3*x^5)/((1 - x)^2*(1 - 2*x - x^2)^2).
(End)
MATHEMATICA
Rest @ CoefficientList[Series[x (7 - 35 x + 74 x^2 - 70 x^3 + 19 x^4 - 3 x^5)/((1 - x)^2*(1 - 2 x - x^2)^2), {x, 0, 28}], x] (* Michael De Vlieger, Sep 04 2017 *)
Table[LucasL[n, 2] + 2 n (3 Fibonacci[n - 2, 2] + Fibonacci[n - 1, 2] - 1) + 1, {n, 20}] (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{6, -11, 4, 5, -2, -1}, {7, 7, 39, 115, 343, 967}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
PROG
(PARI) Vec((7 - 35*x + 74*x^2 - 70*x^3 + 19*x^4 - 3*x^5)/((1 - x)^2*(1 - 2*x - x^2)^2) + O(x^30))
CROSSREFS
Sequence in context: A201958 A351477 A153721 * A151791 A022667 A143430
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 17 2017
EXTENSIONS
a(1)-a(2) and terms a(14) and beyond from Andrew Howroyd, Sep 04 2017
STATUS
approved