login
A153721
Greatest number m such that the fractional part of (Pi-2)^A153717(n) <= 1/m.
7
7, 7, 38, 318, 393, 396, 484, 2076, 2619, 4099, 5264, 8556, 18070, 20732, 27209, 73351, 356362
OFFSET
1,1
FORMULA
a(n) = floor(1/fract((Pi-2)^A153717(n))), where fract(x) = x-floor(x).
EXAMPLE
a(3)=38 since 1/39<fract((Pi-2)^A153717(3))=fract((Pi-2)^23)=0.02600...<=1/38.
MATHEMATICA
A153717 = {1, 20, 23, 24, 523, 2811, 3465, 3776, 4567, 6145, 8507, 9353, 19790, 41136, 62097, 72506, 107346};
Table[fp = FractionalPart[(Pi - 2)^A153717[[n]]]; m = Floor[1/fp];
While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A153717]}] (* Robert Price, Mar 26 2019 *)
KEYWORD
nonn,more
AUTHOR
Hieronymus Fischer, Jan 06 2009
STATUS
approved