OFFSET
1,2
COMMENTS
a(n) is such that a nontrivial n-symmetric permutation of [1..a(n)] might exist.
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 1..34
Bert Dobbelaere, Python program
Tanya Khovanova, 3-Symmetric Permutations
EXAMPLE
The sequence of binomial coefficients C(n,3) starts as: 0, 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, and so on. The smallest nonzero number divisible by 3! is 84, which is C(9,3). Therefore a(3) = 9.
MATHEMATICA
a[n_] := Module[{w, m, bc}, {w, m} = {n!, n}; bc[i_] := Binomial[n-1, i] ~Mod~ w; While[True, bc[n] = (bc[n-1] + bc[n]) ~Mod~ w; If[bc[n] == 0, Return[m]]; For[i = n-1, i >= 0, i--, bc[i] = (bc[i-1] + bc[i]) ~Mod~ w]; m++]];
Array[a, 12] (* Jean-François Alcover, May 31 2019, after Chai Wah Wu *)
PROG
(Python)
from sympy import factorial, binomial
def A320920(n):
w, m = int(factorial(n)), n
bc = [int(binomial(n-1, i)) % w for i in range(n+1)]
while True:
bc[n] = (bc[n-1]+bc[n]) % w
if bc[n] == 0:
return m
for i in range(n-1, 0, -1):
bc[i] = (bc[i-1]+bc[i]) % w
m += 1 # Chai Wah Wu, Oct 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Tanya Khovanova, Oct 24 2018
EXTENSIONS
a(14)-a(15) from Alois P. Heinz, Oct 24 2018
a(16)-a(17) from Chai Wah Wu, Oct 25 2018
a(18)-a(19) from Giovanni Resta, Oct 26 2018
a(20) from Giovanni Resta, Oct 27 2018
a(21) and beyond from Bert Dobbelaere, Feb 11 2020
STATUS
approved