OFFSET
0,2
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,4,0,0,0,0,0,-6,0,0,0,0,0,4,0,0,0,0,0,-1).
FORMULA
a(n) = A129204(n+1)/(5/3+(4/3)*cos(2*Pi*(n+1)/3)).
a(n) = denominator((1/(2*Pi))*Integral_{t=0..2*Pi} exp(i*(n+1)*t)*((t-Pi)/i)^3 dt) with i=sqrt(-1).
a(n) = denominator((Pi^2*(n+1)^2-6)/(n+1)^3).
a(n) = ((n+1)^3/(gcd(n+1,2)*gcd(n+1,3))). - Paul Barry, Oct 09 2007
a(n) = numerator of coefficient of x^6 in the Maclaurin expansion of -exp(-(n+1)*x^2). - Francesco Daddi, Aug 04 2011
Sum_{n>=0} 1/a(n) = 29*zeta(3)/24. - Amiram Eldar, Sep 11 2022
MATHEMATICA
a[n_] := Denominator[3*(3 + (-1)^n)/(n + 1)^3]; Array[a, 50, 0] (* Amiram Eldar, Sep 11 2022 *)
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Paul Barry, Apr 02 2007, Apr 03 2007
STATUS
approved