login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119574
a(n) = binomial(2*n,n)*(n+2)^2/(n+1).
1
4, 9, 32, 125, 504, 2058, 8448, 34749, 143000, 588302, 2418624, 9934834, 40770352, 167152500, 684656640, 2801810205, 11455885080, 46801769190, 191055480000, 779363066790, 3177034283280, 12942655253580, 52693956656640, 214412258531250, 871975203591024
OFFSET
0,1
FORMULA
Conjectured g.f.: (-1 + 14*x - 36*x^2 + (1 - 4*x)^(3/2))/(2*x*(1 - 4*x)^(3/2)). - Harvey P. Dale, Jun 02 2024.
The conjecture is true (see links). - Sela Fried, Oct 02 2024.
a(n) = A000108(n)*A000290(n+2). - Alois P. Heinz, Oct 02 2024
MAPLE
[seq (binomial(2*n, n)*(n+2)^2/(n+1), n=0..25)];
MATHEMATICA
Table[Binomial[2n, n] (n+2)^2/(n+1), {n, 0, 30}] (* Harvey P. Dale, Jun 02 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 31 2006
STATUS
approved