login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A372875
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k symmetric valleys, with k >= 0.
1
1, 2, 5, 13, 1, 34, 7, 90, 31, 1, 242, 113, 10, 659, 375, 59, 1, 1808, 1189, 271, 13, 4977, 3686, 1082, 96, 1, 13715, 11284, 3976, 534, 16, 37798, 34239, 13887, 2507, 142, 1, 104154, 103115, 46949, 10555, 929, 19, 286960, 308452, 155200, 41324, 5028, 197, 1
OFFSET
1,2
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 16-17.
FORMULA
G.f.: x*(1 - 2*x)*(1 - 2*x + 2*x^2 - x^2*y)/((1 - x)*(1 - 5*x + 8*x^2 - 5*x^3 - x^2*y + 2x^3*y)).
Sum_{k>=0} T(n,k) = A007051(n-1).
EXAMPLE
The irregular triangle begins:
1;
2;
5;
13, 1;
34, 7;
90, 31, 1;
242, 113, 10;
659, 375, 59, 1;
1808, 1189, 271, 13;
4977, 3686, 1082, 96, 1;
...
T(5,1) = 7 since there are 7 flattened Catalan words of length 5 with one symmetric valley: 00101, 01001, 01010, 01011, 01012, 01101, and 01212.
MATHEMATICA
T[n_, k_]:=SeriesCoefficient[x(1-2x)(1-2x+2x^2-x^2y)/((1-x)(1-5x+8x^2-5x^3-x^2y+2x^3y)), {x, 0, n}, {y, 0, k}]; Join[{1}, Flatten[ Table[T[n, k], {n, 14}, {k, 0, Floor[(n-2)/2]}]]]
CROSSREFS
Cf. A007051 (row sums), A371963, A371964, A372878.
Sequence in context: A042241 A042911 A137918 * A114502 A135308 A114492
KEYWORD
nonn,tabf
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved