login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A372874
a(n) is the total number of runs of descents over all flattened Catalan words of length n.
1
1, 4, 14, 50, 179, 632, 2192, 7478, 25157, 83660, 275570, 900506, 2922935, 9433088, 30292148, 96855134, 308501513, 979312916, 3099363926, 9782367362, 30799928891, 96758267144, 303350242904, 949277053190, 2965510133069, 9249567319772, 28807812721082, 89600770448618
OFFSET
1,2
LINKS
Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 11-12.
FORMULA
From Baril et al.: (Start)
G.f.: x*(1 - 4*x + 4*x^2 + 2*x^3)/((1 - x)^2*(1 - 3*x)^2).
a(n) = (27*n - 9 + (5*n + 1)*3^n)/36. (End)
E.g.f.: (8 + 9*exp(x)*(3*x - 1) + exp(3*x)*(15*x+1))/36.
MATHEMATICA
LinearRecurrence[{8, -22, 24, -9}, {1, 4, 14, 50}, 28]
CROSSREFS
Cf. A372873.
Sequence in context: A229314 A055099 A335921 * A153367 A211304 A047065
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, May 15 2024
STATUS
approved